Wissenstransfer

Nächste Veranstaltungen

3. ProZell Industrieworkshop – Thema: Trocknungsprozesse in der Batteriezellproduktion:

  • 01. Dezember 2022, 10 – 12 Uhr
  • Digital, webex, Link wird kurz vor der Veranstaltung bereitgestellt.
  • Hier registrieren:
  • Vorläufige Agenda:
    • Industrievortrag: Coming soon.
    • “Trocknungsprozesse nach der Beschichtung”, Philip Scharfer (TFT – ThinFilmTechnology, Karlsruher Institute of Technology)
    • “Nachtrocknungsprozesse und Feuchtemanagement”, Fabienne Huttner (iPAT – Institut für Partikeltechnik, Technische Universität Braunschweig)

ProZell-Industrietag:

  • 7. Februar 2023, ganztätig
  • Jährlich stattfindende Konferenz
  • Präsentation von Forschungsergebnissen aus den Projekten des Clusters
  • Gerichtet an alle interessierten Personen aus Industrie und Forschung
  • Format: Vorträge und Poster
  • Kostenlose Teilnahme
  • Bei Interesse zur Aufnahme in den Informationsverteiler zum Industrietag: kurze E-Mailnachricht an: prozell@tu-braunschweig.de

Vergangene Veranstaltungen

  • 2. ProZell Industrieworkshop – Thema: Assemblierung in der Batteriezellproduktion:
    • 07. September 2022, 10 – 12 Uhr, digital
    • Agenda:
      • „Aktueller Status der Zellassemblierung bei der Manz AG“, Mark Laderer (MANZ)
      • „EXINOS – A machine concept for flexible and continuous cell stack formation“, Kamal Husseini (wbk Institut für Produktionstechnik, Karlsruher Institut für Technologie)
      • „Laserprozesse in der Zellfertigung – Trocknen, Schneiden, Strukturieren, Fügen“, Alexander Olowinsky (Fraunhofer-Institut für Lasertechnik ILT)
  • 1. ProZell Industrieworkshop – Thema: Digitalisierung und Simulation in der Batteriezellproduktion:
    • 20. Juni 2022, 10 – 12 Uhr, digital
    • Agenda:
      • „Digitalisierung und Simulation in der Batteriezellproduktion“, Wilfried Werner (Siemens AG – Digital Industries)
      • „Physico-Chemical Digital Twins for the Development of Li-Ion Batteries“, Timo Danner (DLR am Helmholtz Institut Ulm für Elektrochemische Energiespeicher)
      • „Towards Digital Twin for Sustainable Battery Cell Production: Model-based Digitalization Platform“, Gabriela Ventura Silva (Institut für Werkzeugmaschinen und Fertigungstechnik der TU Braunschweig)
  • 4. ProZell-Industrietag, 29. November 2021, digital, gemeinsam mit dem Kompetenzcluster InZePro, Programmheft Download: Programmheft-Industrietag-2021
  • 3. ProZell-Industrietag, 27. Oktober 2020, digital, Programmheft Download: Programmheft-Industrietag-2020
  • 2. ProZell-Industrietag, 11. September 2019, Braunschweig, Haus der Wissenschaft
  • 1. ProZell-Industrietag, 10. September 2018, Frankfurt, DECHEMA e.V.

News und Downloads

Wissenschaftliche Publikationen

2022

  • Lischka, C., Nirschl, H. (2022), „Calibration of Li‐Ion Cathode Materials for DEM‐Simulations“, In: Energy Tech, DOI: 10.1002/ente.202200849.
  • Jagau, R., Huttner, F., Mayer, J. K., Cavers, H., Scheffler, S., Brokmann, J., Kwade, A. (2022), „Influence of different Alginate and CMC binders on moisture content, electrode structure and electrochemical properties of graphite based anodes for lithium‐ion batteries“, In: Energy Tech, DOI: 10.1002/ente.202200871.
  • Boeselager, C. von, Müller, A., Tönjes, L., Shi, X., Wassenberg, D., Evans, D., Glodde, A., Dietrich, F., Dröder, K. (2022), „Model‐based design and experimental evaluation of a high‐throughput electrode feeding and stacking process“, In: Energy Tech, DOI: 10.1002/ente.202200687.
  • Drees, R., Lienesch, F., Kurrat, M. (2022), „Fast Charging Formation of Lithium‐Ion Batteries Based on Real‐Time Negative Electrode Voltage Control“, In: Energy Tech, DOI: 10.1002/ente.202200868.
  • Weber, M., Moschner, R., Kwade, A. (2022), „Modifying the network structures of high energy anodes for lithium‐ion batteries through intensive dry mixing“, In: Energy Tech, DOI: 10.1002/ente.202200852.
  • Gottschalk, L., Oertel, C., Strzelczyk, N., Müller, J., Krüger, J., Haselrieder, W., Kwade, A. (2022), „Improving the Performance of Lithium‐Ion Batteries Using a Two‐Layer, Hard Carbon‐Containing Silicon Anode for Use in High‐Energy Electrodes“, In: Energy Tech, 2200858, DOI: 10.1002/ente.202200858.
  • Silva, G. V., Thomitzek, M., Lippke, M., Heckmann, T., Karaki, H., Lischka, C., Möhlen, F., Mayer, D., Hagemeister, J., Daub, R. et al. (2022), „Digitalization Platform for Sustainable Battery Cell Production: Coupling of Process, Production and Product Models“, In: Energy Tech, DOI: 10.1002/ente.202200801.
  • Strzelczyk, N., Gottschalk, L., Müller, J., Kwade, A. (2022), „The Influence of Calendering on the Fast Charging Performance and Lithium Plating of Hard Carbon Blend Anodes“, In: Energy Tech, 2200865, DOI: 10.1002/ente.202200865.
  • Frankenberger, M., Mock, C., Kaden, N., Landwehr, I., Veitl, J., Ophey, J., Schälicke, G., Görke, M., Holeczek, H., Kwade, A. et al. (2022), „Improving Wetting Behavior and C‐Rate Capability of Lithium‐Ion Batteries by Plasma Activation“, In: Energy Tech, 2200636, DOI: 10.1002/ente.202200636.
  • Asylbekov, E., Mayer, J., Nirschl, H., Kwade, A. (2022), „Modeling of Carbon Black Fragmentation During High‐Intensity Dry Mixing Using the Population Balance Equation and the Discrete Element Method“, In: Energy Tech, 2200867, DOI: 10.1002/ente.202200867.
  • Mutz, M., Perovic, M., Gümbel, P., Steinbauer, V., Taranovskyy, A., Li, Y., Beran, L., Käfer, T., Dröder, K., Knoblauch, V. et al. (2022), „Toward a Li‐Ion Battery Ontology Covering Production and Material Structure“, In: Energy Tech, 2200681, DOI: 10.1002/ente.202200681.
  • Hoffmann, A., Heider, E. A., Dreer, C., Pfeifer, C., Wohlfahrt-Mehrens, M. (2022), „Influence of the Mixing and Dispersing Process on the Slurry Properties and the Microstructure and Performance of Ultrathick Cathodes for Lithium‐Ion Batteries“, In: Energy Tech, 2200484, DOI: 10.1002/ente.202200484.
  • Spiegel, S., Hoffmann, A., Klemens, J., Scharfer, P., Schabel, W. (2022), „Optimization of Edge Quality in the Slot‐Die Coating Process of High‐Capacity Lithium‐Ion Battery Electrodes“, In: Energy Tech, 2200684, DOI: 10.1002/ente.202200684.
  • Waldmann, T., Scurtu, R.-G., Brändle, D., Wohlfahrt-Mehrens, M. (2022), „Effects of Tab Design in 21700 Li‐Ion Cells: Improvements of Cell Impedance, Rate Capability, and Cycling Aging“, In: Energy Tech, 2200583, DOI: 10.1002/ente.202200583.
  • Altvater, A., Heckmann, T., Eser, J. C., Spiegel, S., Scharfer, P., Schabel, W. (2022), „(Near‐) Infrared Drying of Lithium‐Ion Battery Electrodes: Influence of Energy Input on Process Speed and Electrode Adhesion“, In: Energy Tech, 2200785, DOI: 10.1002/ente.202200785.
  • Drachenfels, N. von, Husmann, J., Khalid, U., Cerdas, F., Herrmann, C. (2022), „Life Cycle Assessment of the Battery Cell Production: Using a Modular Material and Energy Flow Model to Assess Product and Process Innovations“, In: Energy Tech, 2200673, DOI: 10.1002/ente.202200673.
  • Husseini, K., Schmidgruber, N., Henschel, S., Mayer, D., Fleischer, J. (2022), „Model‐Based Optimization of Web Tension Control for the Flexible Cell Stack Assembly of Lithium‐Ion Battery Cells“, In: Energy Tech, 2200679, DOI: 10.1002/ente.202200679.
  • Heckmann, T., Eser, J. C., Altvater, A., Streller, N., Scharfer, P., Schabel, W. (2022), „Experimental Investigation of the Temperature, Pressure, and Binder System Influence on Vacuum Postdrying Processes and Moisture Management of Li‐Ion Battery Electrodes“, In: Energy Tech, 2200859, DOI: 10.1002/ente.202200859.
  • Kucinskis, G., Bozorgchenani, M., Feinauer, M., Kasper, M., Wohlfahrt-Mehrens, M., Waldmann, T. (2022), „Arrhenius plots for Li-ion battery ageing as a function of temperature, C-rate, and ageing state – An experimental study“, In: Journal of Power Sources, 549232129, DOI: 10.1016/j.jpowsour.2022.232129.
  • Lippke, M., Ohnimus, T., Heckmann, T., Ivanov, D., Scharfer, P., Schabel, W., Schilde, C., Kwade, A. (2022), „Simulation of Structure Formation during Drying of Lithium‐Ion Battery Electrodes using Discrete Element Method“, In: Energy Tech, 2200724, DOI: 10.1002/ente.202200724.
  • Schomburg, F., Drees, R., Kurrat, M., Danzer, M. A., Röder, F. (2022), „Characterization of the Solid–Electrolyte Interphase Growth During Cell Formation Based on Differential Voltage Analysis“, In: Energy Tech, 2200688, DOI: 10.1002/ente.202200688.
  • Schreiner, D., Lindenblatt, J., Daub, R., Reinhart, G. (2022), „Simulation of the Calendering Process of NMC‐622 Cathodes for Lithium‐Ion Batteries“, In: Energy Tech, 2200442, DOI: 10.1002/ente.202200442.
  • Prifling, B., Neumann, M., Hein, S., Danner, T., Heider, E., Hoffmann, A., Rieder, P., Hilger, A., Osenberg, M., Manke, I. et al. (2022), „Quantitative Comparison of Different Approaches for Reconstructing the Carbon‐Binder Domain from Tomographic Image Data of Cathodes in Lithium‐Ion Batteries and Its Influence on Electrochemical Properties“, In: Energy Tech, 2200784, DOI: 10.1002/ente.202200784.
  • Hagemeister, J., Stock, S., Linke, M., Fischer, M., Drees, R., Kurrat, M., Daub, R. (2022), „Lean Cell Finalization in Lithium‐Ion Battery Production: Determining the Required Electrolyte Wetting Degree to Begin the Formation“, In: Energy Tech, 2200686, DOI: 10.1002/ente.202200686.
  • Peschel, C., van Wickeren, S., Bloch, A., Lechtenfeld, C.-T., Winter, M., Nowak, S. (2022), „Defining Aging Marker Molecules of 1,3‐Propane Sultone for Targeted Identification in Spent LiNi 0.6 Co 0.2 Mn 0.2 O 2 ||AG Cells“, In: Energy Tech, 2200189, DOI: 10.1002/ente.202200189.
  • Qiu, H., Peschel, C., Winter, M., Nowak, S., Köthe, J., Goldmann, D. (2022), „Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique“, In: Metals, 12 (4), 677, DOI: 10.3390/met12040677.
  • Mayer, J. K., Bockholt, H., Kwade, A. (2022), „Inner carbon black porosity as characteristic parameter for the microstructure of lithium-ion electrodes and its effect on physical and electrochemical properties“, In: Journal of Power Sources, 529231259, DOI: 10.1016/j.jpowsour.2022.231259.
  • Schirmer, T., Qiu, H., Goldmann, D., Stallmeister, C., Friedrich, B. (2022), „Influence of P and Ti on Phase Formation at Solidification of Synthetic Slag Containing Li, Zr, La, and Ta“, In: Minerals, 12 (3), 310, DOI: 10.3390/min12030310.
  • Diener, A., Ivanov, S., Haselrieder, W., Kwade, A. (2022), „Evaluation of deformation behavior and fast elastic recovery of lithium‐ion battery cathodes via direct roll gap detection during calendering“, In: Energy Technol., DOI: 10.1002/ente.202101033.
  • Peschel, C., Horsthemke, F., Winter, M., Nowak, S. (2022), „Implementation of orbitrap mass spectrometry for improved GC-MS target analysis in lithium ion battery electrolytes“, In: MethodsX, 9101621, DOI: 10.1016/j.mex.2022.101621.
  • Neumann, J., Petranikova, M., Meeus, M., Gamarra, J. D., Younesi, R., Winter, M., Nowak, S. (2022), „Recycling of Lithium‐Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling“, In: Adv. Energy Mater., 2102917, DOI: 10.1002/aenm.202102917.
  • Günter, F. J., Keilhofer, J., Rauch, C., Rössler, S., Schulz, M., Braunwarth, W., Gilles, R., Daub, R., Reinhart, G. (2022), „Influence of pressure and temperature on the electrolyte filling of lithium-ion cells: Experiment, model and method“, In: Journal of Power Sources, 517230668, DOI: 10.1016/j.jpowsour.2021.230668.

2021

  • Lauri, V. de, Krumbein, L., Hein, S., Prifling, B., Schmidt, V., Danner, T., Latz, A. (2021), „Beneficial Effects of Three-Dimensional Structured Electrodes for the Fast Charging of Lithium-Ion Batteries“, In: ACS Appl. Energy Mater., DOI: 10.1021/acsaem.1c02621.
  • Maier, M., Vernim, S., Reinhart, G. (2021), „Approach for Efficient Acquisition of Energy Data and Identification of Energy-related Process Parameters in Lithium-Ion Battery Cell Production“, In: Procedia CIRP, 1041401–1406, DOI: 10.1016/j.procir.2021.11.236.
  • Mayer, D., Fleischer, J. (2021), „Concept for modelling the influence of electrode corrugation after calendering on stacking accuracy in battery cell production“, In: Procedia CIRP, 104744–749, DOI: 10.1016/j.procir.2021.11.125.
  • Schreiner, D., Lindenblatt, J., Günter, F. J., Reinhart, G. (2021), „DEM Simulations of the Calendering Process: Parameterization of the Electrode Material of Lithium-Ion Batteries“, In: Procedia CIRP, 10491–97, DOI: 10.1016/j.procir.2021.11.016.
  • Silva, G. V., Thomitzek, M., Abraham, T., Herrmann, C. (2021), „Bottleneck reduction strategies for energy efficiency in the battery manufacturing“, In: Procedia CIRP, 1041017–1022, DOI: 10.1016/j.procir.2021.11.171.
  • Thomitzek, M., Schmidt, O., Abraham, T., Cerdas, F., Röder, F., Krewer, U., Herrmann, C. (2021), „Model-based identification of production tolerances in battery production“, In: Procedia CIRP, 1041059–1064, DOI: 10.1016/j.procir.2021.11.178.
  • Mayer, D., Wurba, A.-K., Bold, B., Bernecker, J., Smith, A., Fleischer, J. (2021), „Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance“, In: Processes, 9 (11), 2009, DOI: 10.3390/pr9112009.
  • Müller, A., Aydemir, M., Boeselager, C. von, van Ohlen, N., Rahlfs, S., Leithoff, R., Dröder, K., Dietrich, F. (2021), „Simulation Based Approach for High-Throughput Stacking Processes in Battery Production“, In: Processes, 9 (11), 1993, DOI: 10.3390/pr9111993.
  • Heubner, C., Voigt, K., Marcinkowski, P., Reuber, S., Nikolowski, K., Schneider, M., Partsch, M., Michaelis, A. (2021), „From Active Materials to Battery Cells: A Straightforward Tool to Determine Performance Metrics and Support Developments at an Application‐Relevant Level“, In: Adv. Energy Mater., 11 (46), 2102647, DOI: 10.1002/aenm.202102647.
  • Waldmann, T., Scurtu, R.-G., Brändle, D., Wohlfahrt-Mehrens, M. (2021), „Increase of Cycling Stability in Pilot-Scale 21700 Format Li-Ion Cells by Foil Tab Design“, In: Processes, 9 (11), 1908, DOI: 10.3390/pr9111908.
  • Kaden, N., Schlüter, N., Leithoff, R., Savas, S., Grundmeier, S., Dröder, K. (2021), „Influence of the Lamination Process on the Wetting Behavior and the Wetting Rate of Lithium-Ion Batteries“, In: Processes, 9 (10), 1851, DOI: 10.3390/pr9101851.
  • Huttner, F., Diener, A., Heckmann, T., Eser, J. C., Abali, T., Mayer, J. K., Scharfer, P., Schabel, W., Kwade, A. (2021), „Increased Moisture Uptake of NCM622 Cathodes after Calendering due to Particle Breakage“, In: J. Electrochem. Soc., 168 (9), 90539, DOI: 10.1149/1945-7111/ac24bb.
  • Ventura Silva, G., Thomitzek, M., Abraham, T., Herrmann, C. (2021), „Simulation-based assessment of energy demand and costs associated with production scrap in the battery production“ in Simulation in Produktion und Logistik 2021 (Eds.: J. Franke, P. Schuderer), ASIM Fachtagung, Göttingen, pp. 103–112. ISBN: 9783736974791.
  • Waldmann, T., Rössler, S., Blessing, M., Schäfer, R., Scurtu, R.-G., Braunwarth, W., Wohlfahrt-Mehrens, M. (2021), „A Direct Comparison of Pilot-Scale Li-Ion Cells in the Formats PHEV1, Pouch, and 21700“, In: J. Electrochem. Soc., 168 (9), 90519, DOI: 10.1149/1945-7111/ac208c.
  • Leißing, M., Peschel, C., Horsthemke, F., Wiemers‐Meyer, S., Winter, M., Nowak, S. (2021), „The Origin of Gaseous Decomposition Products Formed During SEI Formation Analyzed by Isotope Labeling in Lithium‐Ion Battery Electrolytes“, In: Batteries & Supercaps, 4 (11), 1731–1738, DOI: 10.1002/batt.202100208.
  • Radloff, S., Kremer, L. S., Hoffmann, A., Wohlfahrt-Mehrens, M. (2021), „Characterization of structured ultra-thick LiNi0.6Co0.2Mn0.2O2 lithium-ion battery electrodes by mercury intrusion porosimetry“, In: Materials Today Communications, 28102549, DOI: 10.1016/j.mtcomm.2021.102549.
  • Bärmann, P., Mohrhardt, M., Frerichs, J. E., Helling, M., Kolesnikov, A., Klabunde, S., Nowak, S., Hansen, M. R., Winter, M., Placke, T. (2021), „Mechanistic Insights into the Pre‐Lithiation of Silicon/Graphite Negative Electrodes in “Dry State” and After Electrolyte Addition Using Passivated Lithium Metal Powder“, In: Adv. Energy Mater., 2100925, DOI: 10.1002/aenm.202100925.
  • Leißing, M., Horsthemke, F., Wiemers‐Meyer, S., Winter, M., Niehoff, P., Nowak, S. (2021), „The Impact of the C‐Rate on Gassing During Formation of NMC622 II Graphite Lithium‐Ion Battery Cells“, In: Batteries & Supercaps, DOI: 10.1002/batt.202100056.
  • Overhoff, G. M., Nölle, R., Siozios, V., Winter, M., Placke, T. (2021), „A Thorough Analysis of Two Different Pre‐Lithiation Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries“, In: Batteries & Supercaps, DOI: 10.1002/batt.202100024.
  • Drachenfels, N. von, Engels, P., Husmann, J., Cerdas, F., Herrmann, C. (2021), „Scale-Up of Pilot Line Battery Cell Manufacturing Life Cycle Inventory Models for Life Cycle Assessment“, In: Procedia CIRP, 9813–18, DOI: 10.1016/j.procir.2020.12.002.
  • Kouli, M., Kandula, M. W., Dilger, K. (2021), „Laser-material-interactions between ultrashort pulse lasers and electrodes for lithium-ion batteries during micro-structuring the electrode surface“, Proc. SPIE. 11674, Laser-based Micro- and Nanoprocessing XV, p. 46, DOI: 10.1117/12.2582724.
  • Witt, D., Wilde, D., Baakes, F., Belkhir, F., Röder, F., Krewer, U. (2021), „Myth and Reality of a Universal Lithium‐Ion Battery Electrode Design Optimum: A Perspective and Case Study“, In: Energy Technol., 2000989, DOI: 10.1002/ente.202000989.
  • Drees, R., Lienesch, F., Kurrat, M. (2021), „Fast charging lithium-ion battery formation based on simulations with an electrode equivalent circuit model“, In: Journal of Energy Storage, 36102345, DOI: 10.1016/j.est.2021.102345.

2020

  • Kumberg, J., Baunach, M., Eser, J. C., Altvater, A., Scharfer, P., Schabel, W. (2020), „Investigation of Drying Curves of Lithium‐Ion Battery Electrodes with a New Gravimetrical Double‐Side Batch Dryer Concept Including Setup Characterization and Model Simulations“, In: Energy Technol., 2000889, DOI: 10.1002/ente.202000889.
  • Eser, J. C., Deichmann, B., Wirsching, T., Merklein, L., Müller, M., Scharfer, P., Schabel, W. (2020), „Diffusion kinetics of water in graphite anodes for Li-ion batteries“, In: Drying Technology, 1–16, DOI: 10.1080/07373937.2020.1852568.
  • Heck, C. A., Horstig, M.-W. von, Huttner, F., Mayer, J. K., Haselrieder, W., Kwade, A. (2020), „Review—Knowledge-Based Process Design for High Quality Production of NCM811 Cathodes“, In: J. Electrochem. Soc., 167 (16), 160521, DOI: 10.1149/1945-7111/abcd11.
  • Heubner, C., Nikolowski, K., Reuber, S., Schneider, M., Wolter, M., Michaelis, A. (2020), „Recent Insights into Rate Performance Limitations of Li‐ion Batteries“, In: Batteries & Supercaps, DOI: 10.1002/batt.202000227.
  • Peschel, C., Horsthemke, F., Leißing, M., Wiemers‐Meyer, S., Henschel, J., Winter, M., Nowak, S. (2020), „Cover Feature: Analysis of Carbonate Decomposition During Solid Electrolyte Interphase Formation in Isotope‐Labeled Lithium Ion Battery Electrolytes: Extending the Knowledge about Electrolyte Soluble Species (Batteries & Supercaps 11/2020)“, In: Batteries & Supercaps, 3 (11), 1123, DOI: 10.1002/batt.202000235.
  • Henschel, J., Mense, M., Harte, P., Diehl, M., Buchmann, J., Kux, F., Schlatt, L., Karst, U., Hensel, A., Winter, M. et al. (2020), „Phytoremediation of Soil Contaminated with Lithium Ion Battery Active Materials—A Proof-of-Concept Study“, In: Recycling, 5 (4), 26, DOI: 10.3390/recycling5040026.
  • Peschel, C., Horsthemke, F., Leißing, M., Wiemers‐Meyer, S., Henschel, J., Winter, M., Nowak, S. (2020), „Analysis of Carbonate Decomposition During Solid Electrolyte Interphase Formation in Isotope‐Labeled Lithium Ion Battery Electrolytes: Extending the Knowledge about Electrolyte Soluble Species“, In: Batteries & Supercaps, 3 (11), 1183–1192, DOI: 10.1002/batt.202000170.
  • Kremer, L. S., Danner, T., Hein, S., Hoffmann, A., Prifling, B., Schmidt, V., Latz, A., Wohlfahrt-Mehrens, M. (2020), „Influence of the electrolyte salt concentration on the rate capability of ultra‐thick NCM 622 electrodes“, In: Batteries & Supercaps, DOI: 10.1002/batt.202000098.
  • Schreiner, D., Klinger, A., Reinhart, G. (2020), „Modeling of the Calendering Process for Lithium-Ion Batteries with DEM Simulation“, In: Procedia CIRP, 93149–155, DOI: 10.1016/j.procir.2020.05.158.
  • Seeba, J., Reuber, S., Heubner, C., Müller-Köhn, A., Wolter, M., Michaelis, A. (2020), „Extrusion-Based Fabrication of Electrodes for High-Energy Li-Ion Batteries“, In: Chemical Engineering Journal, 125551, DOI: 10.1016/j.cej.2020.125551.
  • Eser, J. C., Deichmann, B., Wirsching, T., Weidler, P. G., Scharfer, P., Schabel, W. (2020), „Hysteresis Behavior in the Sorption Equilibrium of Water in Anodes for Li-Ion Batteries“, In: Langmuir : the ACS journal of surfaces and colloids, 36 (22), 6193–6201, DOI: 10.1021/acs.langmuir.0c00704.
  • Leißing, M., Winter, M., Wiemers-Meyer, S., Nowak, S. (2020), „A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 ∣∣ natural graphite lithium ion battery cells using gas chromatography – barrier discharge ionization detector“, In: Journal of chromatography. A, 1622461122, DOI: 10.1016/j.chroma.2020.461122.
  • Schmidt, O., Thomitzek, M., Röder, F., Thiede, S., Herrmann, C., Krewer, U. (2020), „Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries“, In: J. Electrochem. Soc., 167 (6), 60501, DOI: 10.1149/1945-7111/ab798a.
  • Diehm, R., Kumberg, J., Dörrer, C., Müller, M., Bauer, W., Scharfer, P., Schabel, W. (2020), „In Situ Investigations of Simultaneous Two‐Layer Slot Die Coating of Component‐Graded Anodes for Improved High‐Energy Li‐Ion Batteries“, In: Energy Technol., 8 (5), 1901251, DOI: 10.1002/ente.201901251
  • Horsthemke, F., Leißing, M., Winkler, V., Friesen, A., Ibing, L., Winter, M., Nowak, S. (2020), „Development of a lithium ion cell enabling in situ analyses of the electrolyte using gas chromatographic techniques“, In: Electrochimica Acta, 338135894, DOI: 10.1016/j.electacta.2020.135894.
  • Horsthemke, F., Winkler, V., Diehl, M., Winter, M., Nowak, S. (2020), „Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation“, In: Energy Technol., 8 (2), 2070023, DOI: 10.1002/ente.202070023.
  • Henschel, J., Peschel, C., Klein, S., Horsthemke, F., Winter, M., Nowak, S. (2020), „Clarification of Decomposition Pathways in a State‐of‐the‐Art Lithium Ion Battery Electrolyte through 13 C‐Labeling of Electrolyte Components“, In: Angew. Chem., 132 (15), 6184–6193, DOI: 10.1002/ange.202000727.
  • Henschel, J., Peschel, C., Klein, S., Horsthemke, F., Winter, M., Nowak, S. (2020), „Clarification of Decomposition Pathways in a State-of-the-Art Lithium Ion Battery Electrolyte through 13 C-Labeling of Electrolyte Components“, In: Angewandte Chemie (International ed. in English), 59 (15), 6128–6137, DOI: 10.1002/anie.202000727.
  • Hein, S., Danner, T., Westhoff, D., Prifling, B., Scurtu, R., Kremer, L., Hoffmann, A., Hilger, A., Osenberg, M., Manke, I. et al. (2020), „Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology“, In: J. Electrochem. Soc., 167 (1), 13546, DOI: 10.1149/1945-7111/ab6b1d.
  • Heubner, C., Schneider, M., Michaelis, A. (2020), „Diffusion‐Limited C‐Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li‐Ion Batteries“, In: Adv. Energy Mater., 10 (2), 1902523, DOI: 10.1002/aenm.201902523.
  • Henschel, J., Horsthemke, F., Stenzel, Y. P., Evertz, M., Girod, S., Lürenbaum, C., Kösters, K., Wiemers-Meyer, S., Winter, M., Nowak, S. (2020), „Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells – A comprehensive analytical study“, In: Journal of Power Sources, 447227370, DOI: 10.1016/j.jpowsour.2019.227370.
  • Schälicke, G., Landwehr, I., Dinter, A., Pettinger, K.-H., Haselrieder, W., Kwade, A. (2020), „Solvent‐Free Manufacturing of Electrodes for Lithium‐Ion Batteries via Electrostatic Coating“, In: Energy Technol., 8 (2), 1900309, DOI: 10.1002/ente.201900309.
  • Eser, J. C., Wirsching, T., Weidler, P. G., Altvater, A., Börnhorst, T., Kumberg, J., Schöne, G., Müller, M., Scharfer, P., Schabel, W. (2020), „Moisture Adsorption Behavior in Anodes for Li‐Ion Batteries“, In: Energy Technol., 8 (2), 1801162, DOI: 10.1002/ente.201801162.
  • Huttner, F., Haselrieder, W., Kwade, A. (2020), „The Influence of Different Post‐Drying Procedures on Remaining Water Content and Physical and Electrochemical Properties of Lithium‐Ion Batteries“, In: Energy Technol., 8 (2), 1900245, DOI: 10.1002/ente.201900245.
  • Kremer, L. S., Hoffmann, A., Danner, T., Hein, S., Prifling, B., Westhoff, D., Dreer, C., Latz, A., Schmidt, V., Wohlfahrt-Mehrens, M. (2020), „Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries“, In: Energy Technol., 8 (2), 1900167, DOI: 10.1002/ente.201900167.
  • Haarmann, M., Haselrieder, W., Kwade, A. (2020), „Extrusion‐Based Processing of Cathodes: Influence of Solid Content on Suspension and Electrode Properties“, In: Energy Technol., 8 (2), 1801169, DOI: 10.1002/ente.201801169.
  • Mayer, J. K., Almar, L., Asylbekov, E., Haselrieder, W., Kwade, A., Weber, A., Nirschl, H. (2020), „Influence of the Carbon Black Dispersing Process on the Microstructure and Performance of Li‐Ion Battery Cathodes“, In: Energy Technol., 8 (2), 1900161, DOI: 10.1002/ente.201900161.
  • Meyer, O., Weihs, C., Mähr, S., Tran, H.-Y., Kirchhof, M., Schnackenberg, S., Neuhaus-Stern, J., Rößler, S., Braunwarth, W. (2020), „Development and Implementation of Statistical Methods for Quality Optimization in the Large‐Format Lithium‐Ion Cells Production“, In: Energy Technol., 8 (2), 1900244, DOI: 10.1002/ente.201900244.
  • Schilling, A., Wiemers-Meyer, S., Winkler, V., Nowak, S., Hoppe, B., Heimes, H. H., Dröder, K., Winter, M. (2020), „Influence of Separator Material on Infiltration Rate and Wetting Behavior of Lithium‐Ion Batteries“, In: Energy Technol., 8 (2), 1900078, DOI: 10.1002/ente.201900078.
  • Heimes, H. H., Offermanns, C., Mohsseni, A., Laufen, H., Westerhoff, U., Hoffmann, L., Niehoff, P., Kurrat, M., Winter, M., Kampker, A. (2020), „The Effects of Mechanical and Thermal Loads during Lithium‐Ion Pouch Cell Formation and Their Impacts on Process Time“, In: Energy Technol., 8 (2), 1900118, DOI: 10.1002/ente.201900118.
  • Günther, T., Schreiner, D., Metkar, A., Meyer, C., Kwade, A., Reinhart, G. (2020), „Classification of Calendering‐Induced Electrode Defects and Their Influence on Subsequent Processes of Lithium‐Ion Battery Production“, In: Energy Technol., 8 (2), 1900026, DOI: 10.1002/ente.201900026.
  • Günter, F. J., Rössler, S., Schulz, M., Braunwarth, W., Gilles, R., Reinhart, G. (2020), „Influence of the Cell Format on the Electrolyte Filling Process of Lithium‐Ion Cells“, In: Energy Technol., 8 (2), 1801108, DOI: 10.1002/ente.201801108.
  • Horsthemke, F., Winkler, V., Diehl, M., Winter, M., Nowak, S. (2020), „Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation“, In: Energy Technol., 8 (2), 1801081, DOI: 10.1002/ente.201801081.

2019

  • Henschel, J., Dressler, J. M., Winter, M., Nowak, S. (2019), „Reaction Product Analyses of the Most Active “Inactive” Material in Lithium-Ion Batteries—The Electrolyte. I: Themal Stress and Marker Molecules“, In: Chem. Mater., 31 (24), 9970–9976, DOI: 10.1021/acs.chemmater.9b04133.
  • Henschel, J., Peschel, C., Günter, F., Reinhart, G., Winter, M., Nowak, S. (2019), „Reaction Product Analysis of the Most Active “Inactive” Material in Lithium-Ion Batteries—The Electrolyte. II: Battery Operation and Additive Impact“, In: Chem. Mater., 31 (24), 9977–9983, DOI: 10.1021/acs.chemmater.9b04135.
  • Schreiner, D., Oguntke, M., Günther, T., Reinhart, G. (2019), „Modelling of the Calendering Process of NMC‐622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations“, In: Energy Technol., 7 (11), 1900840, DOI: 10.1002/ente.201900840.
  • Kumberg, J., Müller, M., Diehm, R., Spiegel, S., Wachsmann, C., Bauer, W., Scharfer, P., Schabel, W. (2019), „Drying of Lithium‐Ion Battery Anodes for Use in High‐Energy Cells: Influence of Electrode Thickness on Drying Time, Adhesion, and Crack Formation“, In: Energy Technol., 7 (11), 1900722, DOI: 10.1002/ente.201900722.
  • Henschel, J., Wiemers-Meyer, S., Diehl, M., Lürenbaum, C., Jiang, W., Winter, M., Nowak, S. (2019), „Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes“, In: Journal of chromatography. A, 1603438–441, DOI: 10.1016/j.chroma.2019.07.008.
  • Günter, F. J., Burgstaller, C., Konwitschny, F., Reinhart, G. (2019), „Influence of the Electrolyte Quantity on Lithium-Ion Cells“, In: J. Electrochem. Soc., 166 (10), A1709-A1714, DOI: 10.1149/2.0121910jes.
  • Westhoff, D., Danner, T., Hein, S., Scurtu, R., Kremer, L., Hoffmann, A., Hilger, A., Manke, I., Wohlfahrt-Mehrens, M., Latz, A. et al. (2019), „Analysis of microstructural effects in multi-layer lithium-ion battery cathodes“, In: Materials Characterization, 151166–174, DOI: 10.1016/j.matchar.2019.02.031.
  • Heubner, C., Nickol, A., Seeba, J., Reuber, S., Junker, N., Wolter, M., Schneider, M., Michaelis, A. (2019), „Understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries“, In: Journal of Power Sources, 419119–126, DOI: 10.1016/j.jpowsour.2019.02.060.
  • Henschel, J., Schwarz, J. L., Glorius, F., Winter, M., Nowak, S. (2019), „Further Insights into Structural Diversity of Phosphorus-Based Decomposition Products in Lithium Ion Battery Electrolytes via Liquid Chromatographic Techniques Hyphenated to Ion Trap-Time-of-Flight Mass Spectrometry“, In: Analytical chemistry, 91 (6), 3980–3988, DOI: 10.1021/acs.analchem.8b05229.
  • Schilling, A., Gümbel, P., Möller, M., Kalkan, F., Dietrich, F., Dröder, K. (2019), „X-ray Based Visualization of the Electrolyte Filling Process of Lithium Ion Batteries“, In: J. Electrochem. Soc., 166 (3), A5163-A5167, DOI: 10.1149/2.0251903jes.

2018

  • Schilling, A., Gabriel, F., Dietrich, F., Dröder, K. (2018), „Design of an Automated System to Accelerate the Electrolyte Distribution in Lithium-Ion Batteries“, In: IJMERR, 8 (1), 162–166, DOI: 10.18178/ijmerr.8.1.162-166.
  • Günter, F. J., Habedank, J. B., Schreiner, D., Neuwirth, T., Gilles, R., Reinhart, G. (2018), „Introduction to Electrochemical Impedance Spectroscopy as a Measurement Method for the Wetting Degree of Lithium-Ion Cells“, In: J. Electrochem. Soc., 165 (14), A3249-A3256, DOI: 10.1149/2.0081814jes.
  • Weihs, C., Meyer, O., Schnackenberg, S. (2018), „DMAIC in Lithium-Ion-Battery Production, DOI: 10.5445/KSP/1000085951/09.
  • Meyer, C., Kosfeld, M., Haselrieder, W., Kwade, A. (2018), „Process modeling of the electrode calendering of lithium-ion batteries regarding variation of cathode active materials and mass loadings“, In: Journal of Energy Storage, 18371–379, DOI: 10.1016/j.est.2018.05.018.
  • Thomitzek, M., Schmidt, O., Röder, F., Krewer, U., Herrmann, C., Thiede, S. (2018), „Simulating Process-Product Interdependencies in Battery Production Systems“, In: Procedia CIRP, 72346–351, DOI: 10.1016/j.procir.2018.03.056.
  • Westhoff, D., Manke, I., Schmidt, V. (2018), „Generation of virtual lithium-ion battery electrode microstructures based on spatial stochastic modeling“, In: Computational Materials Science, 15153–64, DOI: 10.1016/j.commatsci.2018.04.060.
  • Kuchler, K., Westhoff, D., Feinauer, J., Mitsch, T., Manke, I., Schmidt, V. (2018), „Stochastic model for the 3D microstructure of pristine and cyclically aged cathodes in Li-ion batteries“, In: Modelling Simul. Mater. Sci. Eng., 26 (3), 35005, DOI: 10.1088/1361-651X/aaa6da.
  • Heubner, C., Seeba, J., Liebmann, T., Nickol, A., Börner, S., Fritsch, M., Nikolowski, K., Wolter, M., Schneider, M., Michaelis, A. (2018), „Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes“, In: Journal of Power Sources, 38083–91, DOI: 10.1016/j.jpowsour.2018.01.077.
  • Meyer, C., Bockholt, H., Haselrieder, W., Kwade, A. (2017), „Characterization of the calendering process for compaction of electrodes for lithium-ion batteries“, In: Journal of Materials Processing Technology, 249172–178, DOI: 10.1016/j.jmatprotec.2017.05.031.